Auditorium Exercise Sheet 2
 Differential Equations I for Students of Engineering Sciences

Eleonora Ficola

Department of Mathematics of Hamburg University Winter Semester 2023/2024
23.10.2022

General information on the DGL I course

- Lecturer: Professor Thomas Schmidt
- Lectures (English, weekly): Tue 16:45-18:15 Audimax II
- Tutor (English): Eleonora Ficola e-mail: eleonora.ficola@uni-hamburg.de office hour (bi-weekly): Mo 14:30-15:30 E4.012
- Auditorium Exercise class (English, bi-weekly): Mo 09:45-11:15 H0.16
- Exercise groups (English, bi-weekly):
- Mo 11:30-13:00 H0.01
- Mo 16:00-17:30 N0009
- Tue 08:00-09:30 0-007
- Exercises and Homework at: DGL I - Lecture material WiSe 2023/2024

Table of contents

(1) Introduction to ODEs
(2) Classification of differential equations
(3) Resolution of first order linear ODEs
(4) Exercises
(5) Appendix

Introduction to differential equations

- Previously: given an algebraic equation/system, look for solution(s) among a certain space of numbers/vectors.
Now: given a differential equation (ODE), look for solution(s) in a space of functions.
- A (real, scalar) ODE is an equation in which a function $y=y(t)$ and its derivative(s) $y^{\prime}, y^{\prime \prime}, \ldots, y^{(m)}$ (up to order $m \in \mathbb{N}$) are related:

$$
F\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m)}\right)=0 \rightarrow m \text {-th order ODE in implicit form }
$$

$y^{(m)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m-1)}\right) \rightarrow m$-th order ODE in explicit form where $y: I \rightarrow \mathbb{R}, I \subseteq \mathbb{R}$ domain of definition.

- A given function \bar{y} defined on I is a solution of $F\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m)}\right)=0$ if

$$
F\left(t, \bar{y}(t), \bar{y}^{\prime}(t), \bar{y}^{\prime \prime}(t), \ldots, \bar{y}^{(m)}(t)\right)=0 \quad \text { for all } t \in I
$$

Introduction to differential equations

- Notice that in case an ODE admits a solution \bar{y} on I, then we cannot expect \bar{y} to be unique!
- The collection of all the possible solution of an ODE is called general solution of the ODE.
- Example 1: $y^{\prime}=4 y$, where $y=y(t)$ defined on $I=\mathbb{R}$.

$$
\begin{gathered}
y \equiv 0 \text { is a (trivial) solution } \\
y(t)=e^{4 t} \text { solves the ODE, but also } y(t)=7 e^{4 t}!
\end{gathered}
$$

The general solution of $y^{\prime}=4 y$ is given by $y(t)=C e^{4 t}, C \in \mathbb{R}$.
CHECK: $y^{\prime}(t)=\left(C e^{4 t}\right)^{\prime}=4 C e^{4 t}=4 y(t) \checkmark$

In order to get a unique solution, we need to impose some restrictions to the ODE: initial and/or boundary conditions.

- Example of initial value problem (IVP):

$$
\begin{cases}y^{\prime \prime}=f\left(t, y, y^{\prime}\right) & \leftarrow \text { ODE of order } m=2 \\ y\left(t_{0}\right)=y_{0} & \\ y^{\prime}\left(t_{0}\right)=z_{0} & \leftarrow \text { need } 2 \text { conditions (on } y \text { and } y^{\prime} \text {) }\end{cases}
$$

with $t_{0} \in I, y_{0}, z_{0} \in \mathbb{R}$.

- Example of boundary value problem (BVP):

$$
\begin{cases}y^{\prime \prime}=f\left(t, y, y^{\prime}\right) & \leftarrow \text { ODE of order } m=2 \\ y(a)=y_{a} & \\ y(b)=y_{b} & \leftarrow \text { need } 2 \text { boundary values }{ }^{*}\end{cases}
$$

where $I=[a, b]$ and $y_{a}, y_{b} \in \mathbb{R}$.
*In general, boundary condition of the form $r_{i}(y(a), y(b))=0$, for $i \in\{1, \ldots, m\}$.

Example of initial value problem

- Solve the ODE in Example 1 with initial datum $y(2)=5$, i.e. solve IVP given by the system

$$
\left\{\begin{array}{l}
y^{\prime}=4 y \\
y(2)=5
\end{array}\right.
$$

Consider the general solution $y(t)=C e^{4 t}, C \in \mathbb{R}$ of the ODE and find the appropriate C by substituting the initial condition:

$$
5=y(2)=C e^{8} \Longrightarrow C=5 e^{-8}
$$

therefore the (unique!) solution of the IVP is given by $y=5 e^{4(t-2)}$.

Autonomous differential equations

An m-th order ODE in $y=y(t)$ is called autonomous if the independent variable t does NOT appear in its expression, i.e. the equation is of the form

$$
y^{(m)}=f\left(y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m-1)}\right)
$$

(instead of $y^{(m)}=f\left(\mathrm{t}, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m-1)}\right)!$)

- Examples of autonomous differential equations:

$$
y^{\prime}=4 y ; \quad 5 y^{\prime \prime \prime}-y^{\prime}=y^{2}-1 ; \quad 9 y^{\prime \prime} / y-y+y^{3}=7
$$

- Examples of NON autonomous differential equations:

$$
y^{\prime}=4 y+2 e^{t} ; \quad 5 \cos (t) y^{\prime \prime \prime}-y^{\prime}=y^{2} ; \quad 9 y^{\prime \prime} / t y-y+y^{3}=t^{7}
$$

Linear differential equations

An m-th order ODE in $y=y(t)$ is linear if the ODE is a linear combination of the derivatives $y, y^{\prime}, \ldots, y^{(m)}$, i.e. it is of the form

$$
\begin{equation*}
A_{m}(t) y^{(m)}+A_{m-1}(t) y^{(m-1)}+\cdots+A_{2}(t) y^{\prime \prime}+A_{1}(t) y^{\prime}+A_{0}(t) y=b(t) \tag{1}
\end{equation*}
$$

with coefficients given by the functions $A_{0}, A_{1}, \ldots, A_{m}: I \rightarrow \mathbb{R}$ and inhomogeneity term $b: I \rightarrow \mathbb{R}$.

Linear differential equations

An m-th order ODE in $y=y(t)$ is linear if the ODE is a linear combination of the derivatives $y, y^{\prime}, \ldots, y^{(m)}$, i.e. it is of the form

$$
\begin{equation*}
A_{m}(t) y^{(m)}+A_{m-1}(t) y^{(m-1)}+\cdots+A_{2}(t) y^{\prime \prime}+A_{1}(t) y^{\prime}+A_{0}(t) y=b(t) \tag{1}
\end{equation*}
$$

with coefficients given by the functions $A_{0}, A_{1}, \ldots, A_{m}: I \rightarrow \mathbb{R}$ and inhomogeneity term $b: I \rightarrow \mathbb{R}$.

- If the coefficients $A_{0}, A_{1}, \ldots, A_{m}$ are constant in I, we say that (1) is a linear ODE with constant coefficients.
- In case $b \equiv 0$ in I, the equation (1) is called homogeneous, otherwise it is inhomogeneous.
- For a linear ODE (1), the corresponding homogeneous ODE is the equation

$$
\begin{equation*}
A_{m}(t) y^{(m)}+A_{m-1}(t) y^{(m-1)}+\cdots+A_{2}(t) y^{\prime \prime}+A_{1}(t) y^{\prime}+A_{0}(t) y=0 \tag{2}
\end{equation*}
$$

Examples of linear/non-linear ODEs

- $y^{\prime}=4 y$ (lin. hom. const. coeff.);
- $y^{\prime}=4 y+2 e^{t} \quad$ (lin. inhom. const. coeff.);
- $9 y^{\prime \prime} / y-y+y^{3}=7$ (non-lin. inhom.) \leadsto corr. hom.: $9 y^{\prime \prime} / y-y+y^{3}=0$;
- $5 \cos ^{4}(t) y^{\prime \prime \prime}-y^{\prime}+t^{2}=0$ (lin. inhom., non-const. coeff.) \leadsto corr. hom.: $5 \cos ^{4}(t) y^{\prime \prime \prime}-y^{\prime}=0$;
- $y^{\prime \prime \prime}-3 y^{\prime}=y^{2}$ (non lin. hom.);

Resolution of first order linear ODEs

A linear ODE of order $m=1$ is of the kind

$$
y^{\prime}=a(t) y+b(t)
$$

For $a, b: I \rightarrow \mathbb{R}$ continuous, there is an explicit formula for determining its general solution.

Resolution of HOMOGENEOUS linear ODEs of order 1

Given a linear, homogeneous, $1^{\text {st }}$ order ODE

$$
\begin{equation*}
y^{\prime}=a(t) y \tag{3}
\end{equation*}
$$

with $a: I \rightarrow \mathbb{R}$ continuous, let $A(t):=\int a(t) \mathrm{d} t$. Then the general solution of (3) is determined by

$$
y(t)=C e^{A(t)}, \quad C \in \mathbb{R} .
$$

Notice that we find infinite solutions depending on the real parameter C !

Resolution of first order linear ODEs

A linear ODE of order $m=1$ is of the kind

$$
y^{\prime}=a(t) y+b(t)
$$

For $a, b: I \rightarrow \mathbb{R}$ continuous, there is an explicit formula for determining its general solution.

Resolution of INHOMOGENEOUS linear ODEs of order 1

Given a linear $1^{\text {st }}$ order ODE

$$
\begin{equation*}
y^{\prime}=a(t) y+b(t) \tag{4}
\end{equation*}
$$

with $a, b: I \rightarrow \mathbb{R}$ continuous, let $A(t):=\int a(t) \mathrm{d} t$ and $B^{*}(t):=\int b(t) e^{-A(t)} \mathrm{d} t$. Then the general solution of (3) is determined by

$$
y(t)=e^{A(t)}\left(B^{*}(t)+C\right), \quad C \in \mathbb{R} .
$$

Notice that we find infinite solutions depending on the real parameter C !

Example of resolution of HOMOGENEOUS linear ODEs of order 1

Example 2. Find the general solution $y=y(t), t \in \mathbb{R}$ of

$$
\begin{equation*}
y^{\prime}-6 t^{2} y=0 \tag{5}
\end{equation*}
$$

It is a first order, linear ODE with $a(t)=6 t^{2}$ continuous and $b(t) \equiv 0$.
Employ the formula for homogeneous ODEs: $y(t)=C e^{A(t)}, C \in \mathbb{R}$. Compute $A(t):=\int a(t) \mathrm{d} t=\int 6 t^{2}=2 t^{3}$ (+const., set const. $=0$), thus the general solution of (5) is given by:

$$
y(t)=C e^{2 t^{3}}, \quad C \in \mathbb{R}
$$

If time available: CHECK that $C e^{2 t^{3}}$ is solution ...

Example of resolution of INHOMOGENEOUS linear ODEs of order 1

Example 3. Find the general solution $y=y(t), t \in \mathbb{R}$ of

$$
\begin{equation*}
y^{\prime}-6 t^{2} y=t^{2} \tag{6}
\end{equation*}
$$

It is a first order, linear ODE with $a(t)=6 t^{2}$ and $b(t)=t^{2}$. Employ the formula for inhomogeneous ODEs: $y(t)=e^{A(t)}\left(B^{*}(t)+C\right), C \in \mathbb{R}$. Compute $A(t):=\int a(t) \mathrm{d} t=\int 6 t^{2}=2 t^{3}$ (+const., set const. $=0$) and $B^{*}(t):=\int b(t) e^{-A(t)} \mathrm{d} t=\int t^{2} e^{-2 t^{3}} \mathrm{~d} t=-e^{-2 t^{3}} / 6$. The general solution of (6) is given by:

$$
y(t)=e^{2 t^{3}}\left(-e^{-2 t^{3}} / 6+C\right)=C e^{2 t^{3}}-1 / 6, \quad C \in \mathbb{R} .
$$

If time available: CHECK that $C e^{2 t^{3}}-1 / 6$ is solution ...

Example of resolution of INHOMOGENEOUS linear ODEs of order 1

Example 3. Find the general solution $y=y(t), t \in \mathbb{R}$ of

$$
\begin{equation*}
y^{\prime}-6 t^{2} y=t^{2} \tag{6}
\end{equation*}
$$

It is a first order, linear ODE with $a(t)=6 t^{2}$ and $b(t)=t^{2}$. Employ the formula for inhomogeneous ODEs: $y(t)=e^{A(t)}\left(B^{*}(t)+C\right), C \in \mathbb{R}$.
Compute $A(t):=\int a(t) \mathrm{d} t=\int 6 t^{2}=2 t^{3}$ (+const., set const. $=0$) and $B^{*}(t):=\int b(t) e^{-A(t)} \mathrm{d} t=\int t^{2} e^{-2 t^{3}} \mathrm{~d} t=-e^{-2 t^{3}} / 6$. The general solution of (6) is given by:

$$
y(t)=e^{2 t^{3}}\left(-e^{-2 t^{3}} / 6+C\right)=C e^{2 t^{3}}-1 / 6, \quad C \in \mathbb{R} .
$$

NOTE: The general integral of (6) is given by the difference of $y_{\text {hom }}:=C e^{2 t^{3}}$ gen. int. of (5), and $y_{p}:=-1 / 6$ particular sol. of (6).

Exercises

Exercise 1. For each of the following differential equation, determine:

- the order;
- if the ODE is autonomous or not;
- if the ODE is linear or not;
- if it is homogeneous or not;

In case of linearity, determine:

- if it has continuous and/or constant coefficients; In case of inhomogeneity, write the corresponding homogeneous ODE.
(i) $y^{\prime}=6 t^{2} y$;
(ii) $y^{\prime \prime}=4 t^{3} \sqrt{t}, t \geq 0$;
(iii) $y^{\prime}+\frac{2 t}{y^{(4)}}\left(1+2 t^{2}\right)=0$;
(iv) $y^{\prime}=t\left(y+e^{4}\right)$;
(v) $y^{\prime \prime \prime}=y^{2}-1$;
(vi) $\dot{x}=\left(x^{2}+t^{2}\right) / t x, t \neq 0$;
(vii) $y^{\prime}+\cos ^{5}(t) y-t y^{3}=0$;
(viii) $y^{\prime \prime}=y+2 t$.

Exercises

- Exercise 2. Determine the general solutions of the following linear differential equations (unless specified, consider $I=\mathbb{R}$).
(i) $y^{\prime}-5 y+10=t$
(ii) $\dot{x}=\cos (5 t)(x+1)$;
(iii) $y^{\prime}+2 t y=e^{t-t^{2}}$;
(v) $y^{\prime} / 2-y=2 t^{2}$
(vii) $\left(y^{\prime}\right)^{2}=y^{\prime} \sin (3 t)$.
- Exercise 3. For each ODE of Exercise 2, determine the (unique) solution knowing that the function takes value -1 at time $t=0$.

Exercises

Exercise 4. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}+9 y-3 t=0 \tag{7}
\end{equation*}
$$

and the functions $y_{1}(t):=\cos (3 t), y_{2}(t):=\sin (3 t), y_{3}(t):=t / 3$.

- Classify the equation (7).
- Verify that the functions $y_{1}+y_{3}, y_{2}+y_{3}$ and y_{3} are solutions of (7).
- Write the associated homogeneous equation of (7).
- Verify that any linear combination of y_{1}, y_{2} is a solution of the homogeneous equation of (7).
- Can you find a linear combination of y_{1} and y_{3} which does NOT solve (7)? Why?

Appendix

Table of most common integrals

1. $\int x^{n} d x=\frac{x^{n+1}}{n+1} \quad(n \neq-1)$
2. $\int \frac{1}{x} d x=\ln |x|$
3. $\int e^{x} d x=e^{x}$
4. $\int a^{x} d x=\frac{a^{x}}{\ln a}$
5. $\int \sin x d x=-\cos x$
6. $\int \cos x d x=\sin x$
7. $\int \sec ^{2} x d x=\tan x$
8. $\int \csc ^{2} x d x=-\cot x$
9. $\int \sec x \tan x d x=\sec x$
10. $\int \sec x d x=\ln |\sec x+\tan x|$
11. $\int \csc x \cot x d x=-\csc x$
12. $\int \tan x d x=\ln |\sec x|$
13. $\int \csc x d x=\ln |\csc x-\cot x|$
14. $\int \sinh x d x=\cosh x$
15. $\int \cot x d x=\ln |\sin x|$
16. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
17. $\int \cosh x d x=\sinh x$
18. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)$
*19. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|$

Appendix

Some trigonometric identities

Double Angle Identities

$$
\begin{aligned}
& \sin (2 \theta)=2 \sin \theta \cos \theta \\
& \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \\
& \cos (2 \theta)=2 \cos ^{2} \theta-1 \\
& \cos (2 \theta)=1-2 \sin ^{2} \theta \\
& \tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{aligned}
$$

Sum to Product of Two Angles

$$
\begin{aligned}
& \sin \theta+\sin \phi=2 \sin \left(\frac{\theta+\phi}{2}\right) \cos \left(\frac{\theta-\phi}{2}\right) \\
& \sin \theta-\sin \phi=2 \cos \left(\frac{\theta+\phi}{2}\right) \sin \left(\frac{\theta-\phi}{2}\right) \\
& \cos \theta+\cos \phi=2 \cos \left(\frac{\theta+\phi}{2}\right) \cos \left(\frac{\theta-\phi}{2}\right) \\
& \cos \theta-\cos \phi=-2 \sin \left(\frac{\theta+\phi}{2}\right) \sin \left(\frac{\theta-\phi}{2}\right)
\end{aligned}
$$

Half Angle Indentities

$$
\begin{aligned}
\sin ^{2} \theta & =\frac{1-\cos (2 \theta)}{2} \\
\cos ^{2} \theta & =\frac{1+\cos (2 \theta)}{2} \\
\tan ^{2} \theta & =\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}
\end{aligned}
$$

Product to Sum of Two Angles

$$
\begin{aligned}
& \sin \theta \sin \phi=\frac{[\cos (\theta-\phi)-\cos (\theta+\phi)]}{2} \\
& \cos \theta \cos \phi=\frac{[\cos (\theta-\phi)+\cos (\theta+\phi)]}{2} \\
& \sin \theta \cos \phi=\frac{[\sin (\theta+\phi)+\sin (\theta-\phi)]}{2} \\
& \cos \theta \sin \phi=\frac{[\sin (\theta+\phi)-\sin (\theta-\phi)]}{2}
\end{aligned}
$$

DEL I - AUDITORIUM EXERCISE GLASS 2
Exercise 2

$$
\left[\begin{array}{l}
\left.y^{\prime}(t)=a(t) y(t)+b(t)\right] \\
\text { la der linear oat with continuous cruft }
\end{array}\right]
$$

$$
\begin{aligned}
& \text { (i) } y^{\prime}-5 y+10=t, \\
& {\left[y^{\prime}=5 y+(t-10)\right]} \\
& a(t)=5 \quad A(t)= \\
& b(t)=t-10 \quad B^{*}(t)= \\
& \left.\int \begin{array}{l}
\text { palm. }
\end{array}\right) \quad \exp \\
& \downarrow \quad g^{\prime} \\
& f \quad g^{\prime} \\
& g^{\prime}(t)=e^{-5 t} \quad g(t)=-\frac{e}{5} \\
& f(t)=t \quad f^{\prime}(t)=1
\end{aligned}
$$

$$
t \& \mathbb{R}=I
$$

$$
t \in \mathbb{R}=1
$$

$$
B^{*}(t)=\int b(t) \cdot e^{A(t)} d t=\int_{(-5 t}(t-10) e^{-5 t} d t=
$$

$$
=\int t e^{-5 t} d t-10 \int e^{-5 t} d t=
$$

$$
\begin{aligned}
& =t e^{-5 t} d t-10 \int e^{-5 t} d t= \\
& =-\frac{t e^{-5 t}}{5}+\int+\frac{e^{-5 t}}{5} d t+2 e^{-5 t}=
\end{aligned} \quad \int f(t) \cdot g^{\prime}(t) d t=
$$

$$
\begin{aligned}
& =-\frac{t e}{5}+\int+\frac{e^{5}}{5} d t+2 e= \\
& =-\frac{t}{5} e^{-5 t}-\frac{e^{-5 t}}{25}+2 e^{-5 t}=
\end{aligned}
$$

$$
\leadsto y(t)=e^{5 t}\left(e^{-5 t} \cdot \frac{49-5 t}{25}+C\right)=\frac{49-5 t}{25}+C e^{5 t}, \quad C \in \mathbb{R}
$$

INT. BY PaRTS general solution:

$$
\left.y(t)=e^{A(t)}\left[B^{*} t\right)+C\right]
$$

$$
\therefore=e^{-5 t} \cdot \frac{49-5 t}{25}
$$

general sol of the OXE

+ Exercise 3(i)
Solve (IVP) $\left\{\begin{array}{l}y^{\prime}-5 y+10=t \longleftarrow \text { The sol of the (IVP) is: } \\ \text { S }\end{array}\right.$

$$
-1=\varphi(0)=\frac{49-5 \cdot 0}{25}+C \cdot e^{50}=\frac{49}{25}+C \Rightarrow C=\frac{-25-49}{25}=\frac{-74}{25}
$$

> Exercise 3 (vi)
> (VV)

$$
\begin{aligned}
& B^{*}(t)=\int b(t) \cdot e^{-A(t)} d t=\int \frac{1}{t^{2}-1} d t=\int \frac{1}{2(t-1)} d t-\int \frac{1}{2(t+1)} d t \stackrel{1}{2} \ln |t-1|-\frac{1}{2} \ln |t+1|^{+a x}= \\
& =\frac{1}{2} \ln \left|\frac{t-1}{t+1}\right|
\end{aligned}
$$

